# **5G Wireless Security**

Arupjyoti Bhuyan, Carl A Kutsche September 2018



The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

## **5G Wireless Security**

Arupjyoti Bhuyan, Carl A Kutsche

September 2018

Idaho National Laboratory Idaho Falls, Idaho 83415

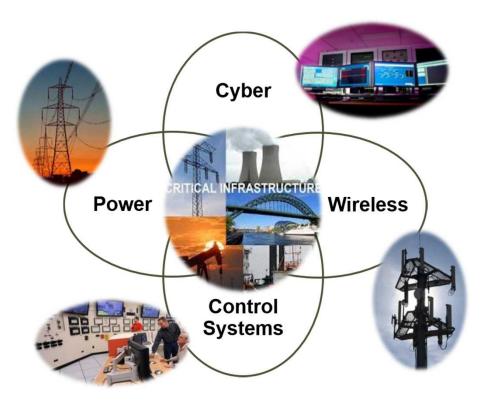
http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract 530181CIP

# Idaho National Laboratory

# 5G Wireless Security

Dr. Arupjyoti (Arup) Bhuyan


Dr. Carl Kutsche

**National & Homeland Security Idaho National Laboratory** 





# Wireless security is essential to protecting the nation's critical infrastructure



INL Capabilities Secure Wireless Solutions from Concept through Validation and Deployment

#### Wireless Research:

Develop solutions to national spectrum and wireless communications security challenges (WSComm<sup>1</sup>, WiFIRE<sup>2</sup>, mmWave physical layer security, 5G Cellular UAS<sup>3</sup>)



Wireless Modeling & Simulation: Advanced software engineering, validation and testing of wireless security solution technology design (IMOM<sup>4</sup>)



Wireless Test Bed: Test and validate full-scale deployment of wireless communications security technology solutions (*JamX 17*<sup>5</sup>)



## Securing Wireless Communications Spectrum

#### **Current challenges:**

- Communication disruption from both unintended and deliberate interference.
- Violation of spectrum sharing rules.
- Use of vulnerabilities in wireless spectrum protocols (LTE/WiFi, etc.) to disrupt or degrade services.
- Illegal access of subscriber information for spectrum use, user traffic, and protected spectrum databases.
- Attack on critical information such as location in a sensor network.
- Use of cellular connected UAS/drone to attack critical infrastructure.

#### **Current approaches for mitigation:**

- Detection and localization of interference source.
- Transmission of content over a large band with very low power levels comparable to noise.
- Signaling data link with higher reliability.
- Real time spectrum monitoring and RF classification with machine learning.
- Cryptographic methods such as authentication and encryption.
- Security at the lower/physical layer exploiting uniqueness of wireless transmission.
- Detection of unauthorized UAS in sensitive areas.



### How will 5G Impact the Spectrum Security Issue

#### New spectrum capabilities with 5G:

- Additional spectrum with and without spectrum sharing in sub 6 GHz and mmWave bands.
- Use of unlicensed and shared spectrum with 5G NR (New Radio).
- Beam based instead of sector based air interface.
- ➤ 5G enabled IoT¹, connected health, vehicles, UAS etc.
- Edge computing with SDN² and NFV³ for applications including industrial IoT, augmented reality (AR), connected health, and connected vehicles (V2X).

#### Additional challenges:

- Increase in illegal and disruptive use of spectrum sharing.
- Adapting wireless security to beam based directional transmission.
- Secure operation of increasing number of connected UAS and vehicles.
- Secure use of edge connectivity to enable 5G applications.
- Decrease in the size of an antenna array needed to localize RF sources in the GHz bands for malicious purpose.

<sup>&</sup>lt;sup>1</sup> Internet of Things, <sup>2</sup> Software Defined Networking, <sup>3</sup> Network Function Virtualization



### Wireless Research Opportunities

#### **5G Wireless Security Research Areas:**

- Security and resiliency improvement using unique physical layer characteristics in the mmWave bands (e.g., device forensics and RF biometrics).
- Attack identification and threat mitigation for the radio frames and channels in NR.
- > Secure spectrum sharing with improved and faster detection, localization, and response to spectrum abuse.
- Secure cellular UAS/drone control and communication system, including authentication system for detecting and localizing illegal users.
- Beam propagation and RF coverage models in the air for secure and reliable cellular UAS/drone operation.
- Secure and reliable use of spectrum for V2X wireless communications.

#### **Additional Recommendations:**

- Increase nationwide focus on wireless security and resiliency research efforts.
- Advocate "Cyber Informed Engineering" for spectrum control and operations.
- Support Intrusive test set and procedures to certify equipment for secure use of spectrum (e.g., adversarial model based automated test generation).

